Electron Configuration
(Section 5.2)

Dr. Walker
Objectives

• To determine the electron configuration of any of the first 38 elements of the periodic table
• To determine the identity of an element from its electron configuration
• To complete an orbital diagram using arrows to represent electrons
Where are Electrons?

• Electrons exist in different energy levels (previously described as “shells”)

• The energy levels correspond to the horizontal rows on the periodic table
Where are Electrons?

• **Orbitals** are areas within shells where the electrons are located
 – These orbitals may have different shapes
 – There may be different numbers of orbitals within a shell

• We know the electron is somewhere in the orbital, but we can’t know exactly where it is or how fast it is moving
 – Heisenberg’s Uncertainty Principle

• Each orbital can hold two electrons (Pauli Exclusion Principle)
Periodic Table of the Elements

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>GROUP 1A (1)</th>
<th>GROUP 2A (2)</th>
<th>GROUP 3A (13)</th>
<th>GROUP 4A (14)</th>
<th>GROUP 5A (15)</th>
<th>GROUP 6A (16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H 1.0079</td>
<td>He 4.0026</td>
<td>Li 6.941</td>
<td>Be 9.0122</td>
<td>B 10.811</td>
<td>C 12.0115</td>
</tr>
<tr>
<td>3</td>
<td>K 39.102</td>
<td>Ca 40.078</td>
<td>Sc 44.956</td>
<td>Ti 47.867</td>
<td>V 50.942</td>
<td>Cr 52.000</td>
</tr>
<tr>
<td>4</td>
<td>Rb 85.468</td>
<td>Sr 87.621</td>
<td>Y 88.906</td>
<td>Zr 91.224</td>
<td>Nb 92.906</td>
<td>Mo 95.943</td>
</tr>
<tr>
<td>5</td>
<td>Cs 132.91</td>
<td>Ba 137.33</td>
<td>La 138.91</td>
<td>Ce 140.12</td>
<td>Pr 140.91</td>
<td>Nd 144.24</td>
</tr>
<tr>
<td>6</td>
<td>Fr 223</td>
<td>Ra 226</td>
<td>Ac-Lr 89-103</td>
<td>Rf 261</td>
<td>Db 262</td>
<td>Sg 263</td>
</tr>
</tbody>
</table>

Lanthanide

| La 138.91 | Ce 140.91 | Pr 140.91 | Nd 144.24 | Pm 145 | Sm 150.36 | Eu 151.96 | Gd 157.25 | Tb 158.93 | Dy 162.50 | Ho 164.93 | Er 167.26 | Tm 168.93 | Yb 173.04 | Lu 174.97 |

Actinide

| Ac 227 | Th 232 | Pa 231 | U 238 | Np 237 | Pu 244 | Am 243 | Cm 247 | Bk 247 | Cf 251 | Es 252 | Fm 257 | Md 261 | No 269 | Lr 262 |
Learning Check

• What are orbitals?

• Where are orbitals?

• How many electrons reside in each orbital?
Learning Check

- What are orbitals? A place where electrons can be found

- Where are orbitals? Outside the nucleus

- How many electrons reside in each orbital? 2
Types of Orbitals (subshells)

• S orbitals – 1 orbital per shell – holds ___ electrons total

• P orbitals – 3 orbitals per shell – holds ___ electrons total

• D orbitals – 5 orbitals per shell – holds ___ electrons total

• F orbitals – 7 orbitals per shell – holds ___ electrons total
Types of Orbitals (subshells)

- **S orbitals** – 1 orbital per shell – holds 2 electrons total
- **P orbitals** – 3 orbitals per shell – holds 6 electrons total
- **D orbitals** – 5 orbitals per shell – holds 10 electrons total
- **F orbitals** – 7 orbitals per shell – holds 14 electrons total
Electron Configuration

• Defined
 – Electron configuration is the arrangement of electrons around the nucleus of an atom based on their energy level.
Actual Electron Configurations

• Total electrons = atomic number
• Electrons are added one at a time to the lowest energy levels first (Aufbau principle)
• Fill energy levels with electrons until you run out
• A superscript states how many electrons are in each level
Order of Orbitals

- Low Energy to High Energy (# of electrons)
 - 1s (2)
 - 2s (2)
 - 2p (6)
 - 3s (2)
 - 3p (6)
 - 4s (2)
 - 3d (10)
 - 4p (6)
 - 5s (2)
 - Continues for the whole periodic table
 - You’re expected to know through here
Making Sense of the Order
Another option

- Draw the orbitals in this format, use diagonal lines to determine order of orbitals to fill
Actual Electron Configurations

• Total electrons = atomic number
• Fill energy levels with electrons until you run out
• A superscript states how many electrons are in each level
 – Hydrogen – 1s1 – 1 electron total
 – Helium – 1s2 – 2 electrons total
 – Lithium – 1s22s1 – 3 electrons total
 – Beryllium – 1s22s2 – 4 electrons total
Actual Electron Configurations

• Bigger Elements
 – Fill the energy levels until you run out of electrons
 – Oxygen
 – Sodium
 – Titanium
Actual Electron Configurations

• Bigger Elements
 – Fill the energy levels until you run out of electrons
 – Oxygen
 • $1s^22s^22p^4$
 – Sodium
 • $1s^22s^22p^63s^1$
 – Titanium
 • $1s^22s^22p^63s^23p^64s^23d^2$
Practice

• Potassium
Practice

• Potassium
 – Atomic Number = 19
 – $1s^22s^22p^63s^23p^64s^1$

 – Superscripts add up to atomic number
The s suborbital fills

The orbitals and the periodic table
The orbitals and the periodic table

The p suborbitals fill
The orbitals and the periodic table

The d suborbitals fill
Shorthand

• Shorter form of electron configuration

• \([\text{Ne}] = 1s^22s^22p^6\)
• \([\text{Ar}] = 1s^22s^22p^63s^23p^6\)

• Potassium
 – Atomic Number = 19
 – \(1s^22s^22p^63s^23p^64s^1\)
 – \([\text{Ar}]4s^1\)
Pauli Exclusion Principle

• Two electrons in same orbital have different spins
Orbital Diagrams

- Each electron is an arrow
- They have opposing “spins” – think of two bar magnets together
- Orbital diagrams are visual representations of electron configuration
Hund’s Rule

• When electrons are filling orbitals of the same energy, they prefer to enter empty orbitals first. These electrons all have the same spin.

• A diagram of nitrogen is shown below (7 total electrons):
Hund’s Rule

• The orbital diagram below violates Hund’s rule because the third electron does not enter the empty 2p orbital.
Terms to Know & Skills to Master

• Terms
 – Orbitals
 – Hund’s Rule
 – Aufbau principle
 – Pauli Exclusion principle

• Skills
 – Determining electron configuration from number of electrons
 – Determining the identity of an element from its electron configuration
 – Completing orbital diagrams using arrows to represent electrons